翻訳と辞書 |
Higman's lemma : ウィキペディア英語版 | Higman's lemma In mathematics, Higman's lemma states that the set of finite sequences over a finite alphabet, as partially ordered by the subsequence relation, is well-quasi-ordered. That is, if is an infinite sequence of words over some fixed finite alphabet, then there exist indices such that can be obtained from by deleting some (possibly none) symbols. More generally this remains true when the alphabet is not necessarily finite, but is itself well-quasi-ordered, and the subsequence relation allows the replacement of symbols by earlier symbols in the well-quasi-ordering of labels. This is a special case of the later Kruskal's tree theorem. It is named after Graham Higman, who published it in 1952. ==References==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Higman's lemma」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|